Investigating the Chemical Signals of Galerucella spp. for Effective Biological Control of Lythrum salicaria Alyssa Matz Molecular and Cellular Biology alyssa.matz@uconn.edu 203 909 0879

The invasive plant *Lythrum salicaria* has been a main contributor to the decline of wetland ecosystems across the North American continent. *Galerucella* spp. beetles *G. calmariensis* and *G. pusilla* are proven safe and effective biological control agents of this invasive plant; however, they are often limited to the plant colonies they are first introduced to. In order to best control the *L. salicaria* population, the mechanism which these beetles use to find new host plants needs to be better understood. · Part I of this study sought to test if *L. salicaria* emit a fragrance, presumably green leaf volatiles (GLVs), when damaged that *Galerucella* spp. beetles are attracted to in comparison to intact plant scents. · In part II, individual synthetic green leaf volatiles described in Bartelt 2008 were blended to determine if they are responsible for the behaviors observed in part I. Beetle responses to experimental conditions were observed in olfactometers, revealing an increased attraction to damaged versus intact *L. salicaria* and they were repelled by synthetic blends. This suggests the volatiles emitted from the damaged *L. salicaria* plant are independently able to assist *Galerucella* spp. beetles in host finding and demonstrates that understanding of *Galerucella* spp. beetles respond to individual plant signals is more complex than previously described. Further, mechanical damage to *L. salicaria* may enhance beetle colonization, but further development on GLVs effects is needed in order to be able to utilize synthetic blends.

Introduction

Lythrum salicaria · Purple Loosestrife

Results

Part I: Beetles had Significant <u>Attraction</u> to Damaged Plant Scent

- Flowering wetland plant invasive nonnative in North America
 - Found in all contiguous US states and Canadian Providences
 - Largest populations in New England
 - Found in all CT providences
- No native predators, hardy and prolific. Outcompetes native wetland plants like cattails
- Forms dense monotypic plant stands
- Unsuitable as cover, food, or nesting
- Overall decrease in biodiversity. Many rare/endangered species
 affected

Biological Control

- 2 species: Leaf eating beetles Galerucella calmariensis and pusilla
- Extensively studied to show no further harm to native ecosystem
 - High specificity for feeding⁷
- In CT, 2 million insects released over 110 sites
- Able to skeletonize plant, slowing growth and spread⁸
- Low initial energy input for long-term effects
- Control not eradicate

ine indertundal wetland, Sandy Neck, Barnstable, MA SFWS

(*Figure 1*) Each beetle's movements was tracked for 30 minutes at one-minute intervals. For each treatment, the total times spent in the experimental scent and the control of all beetles tested was summed. The Preference-Binomial test determined if there was a significant preference for either scent. Chi-Squared test determined the probability that the preference was due to chance. p-value of <0.05 meant the preference was not due to chance

Limitations:

- Host finding ineffective
- Previously believed to be largely based on sight and chance⁵
- New L. salicaria populations found every year

In order to Enhance the Spread of Pioneer beetles, this study sought to investigate possible <u>Chemical Signals</u> *L. salicaria* Expresses that *Galerucella* spp. beetles use to Identify Host Plants

Part I

<u>Are Galerucella spp. beetles Attracted to</u> <u>Damaged L. salicaria?</u>

- Evidence suggests beetle are sensitive to scents of *L. salicaria* when mechanically damaged⁴, but can these scents independently attract them?
- Green Leaf Volatiles (GLVs) are expressed when a plant is damaged
 - Plant defense, Plant-Plant
 Communications, and Plant-Insect Interaction⁶
 - May recruit predators to protect the plant
 - Arthropod predators of *G. calmariensis* greatly reduce effectiveness of control on *L. salicaria* populations⁹

Part II

Are Previously Identified GLVs Responsible for Part I Response?

- 6 GLVs previously shown to be <u>sensed</u> by beetles' antennae¹
 - No experimental studies conducted on beetle affinity
 - Preliminary data showed no attraction¹

cis-3-hexenal, trans-2-Hexen-1-al, cis-3-Hexen-1ol, trans-2-Hexen-1-ol, 1-Hexanol, and cis-3-Hexenyl acetate

• Each molecule's relative abundance and role in chemical signaling needs further investigation

Methods and Materials

Plant and Beetle Collections Plants grown in controlled greenhouse

Behavioral Studies

(Figure 2.) Error bars demonstrate the observed deviation from a 50:50 ratio. (2.1) Damaged Plant(left) vs Mineral Oil Control(right); deviation of 46 mins. (2.2) Intact Plant(left) vs Mineral Oil Control(right); deviation of 12 mins. (2.3) Blend 1(left) vs Mineral Oil Control(right); deviation of 57 mins. (2.4 Blend 2(left) vs Mineral Oil Control(right); deviation of 96 mins. (2.5) Blend 2(left) vs Damaged Plant(right); deviation of 40 mins.

Conclusions

- Galerucella spp. have Adapted to Exploit Signaling Pathway of Damaged Host Plant for Detection
 - Light mechanical damage to leaves might encourage beetle detection and retention
 - This would promote the spread of beetles to expanding *L. salicaria* populations
 - The composition of the scent and the way in which the beetles' respond to each of the various constituents must be understood

Each Chemical Plays a Unique Role in Signaling

Their Relative Abundance may shape Beetles' Response

- Additionally, the repulsion to these blends suggests beetles use the signals of the damaged plant beyond locating the plant
 - Selection for less damaged plants

Experimental Treatments:

- 1. Damaged *L. salicaria* Plant Material versus 0.5 mL Mineral Oil
- 2. Intact *L. salicaria* Plant Material versus 0.5 mL Mineral Oil

- 2. 0.5 mL Blend 2 versus 0.5 mL Mineral Oil
- 3. 0.5 mL Blend 2 versus Damaged *L. salicaria* Plant Material

Olfactometer:

Beetles placed in arena and exposed to two distinct scents

Blends:

1: 5x10-5 moles of chemicals, excluding trans structure chemicals, in 9.380 mL Mineral Oil

2: 5x10-5 moles of all chemicals in 9.135 mL Mineral Oil

Every minute for 30 minutes, the movements of the beetle in the olfactometer were observed and recorded

Time immediately started recording when the beetle was placed in the device

Channel 2

If the beetle was immobile for more than 5 minutes, they were reset to the center of the device If they were immobile repeatedly, their data was discarded

If they were directly on the center line, whichever way their antennae were facing was recorded

- Arthropod avoidance
- More research needed in order to utilize synthetic GLVs optimally
 - Relative abundance in natural scent
 - Individual effect on beetle
 - Arthropod response

- 1. Bartelt, R. J. 2008. Early-summer pheromone biology of *Galerucella calmariensis* and relationship to dispersal and colonization. *Biological Control* 46: 409-16.
- 2. Blossey, Bernd, Dr. 2002 "Purple Loosestrife." Purple Loosestrife. Invasive Plant Web
- 3. Ellis, D. 2015. Connecticut Purple Loosestrife Program. Purple Loosestrife Guide. University of Connecticut. http://www.purpleloosestrife.uconn.edu/
- 4. Fors, L. et al. 2015. Chemical communication and host search in *Galerucella* leaf beetles. *Chemoecology* 25: 33-45.
- 5. Hambäck, P. A., J. Pettersson, and L. Ericson. "Are Associational Refuges Species-Specific?" *Functional Ecology* 17.1 (2003): 87-93. Web.
- 6. Hassan, M. N., Z. Zainal & I. Ismail. 2015. Green leaf volatiles: Biosynthesis, biological functions and their applications in biotechnology. *Plant Biotechnology Journal* 13: 727-739.
- 7. Kok, L. T., et al. 1992. Host specificity tests of *Galerucella calmariensis* (L.) and *G. pusilla* (Duft.) (Coleoptera: Chrysomelidae), potential biological control agents of purple loosestrife, *Lythrum salicaria* L. (Lythraceae). *Biological Control* 2: 282-90.
- 8. Malecki, R., Blossey, B., Hight, S., Schroeder, D., Kok, L., & Coulson, J. (1993). Biological Control of Purple Loosestrife. *BioScience, 43*(10), 680-686.
- 9. Sebolt, D. C. 2004. Arthropod predators of *Galerucella calmariensis* L. (Coleoptera: Chrysomelidae): An assessment of biotic interference. *Environmental Entomology* 33: 356-361.