Herbicide resistance in *Hydrilla verticillata* and Other Aquatic Plants

Lori K. Benoit, Ph.D.

Global Increase in Unique Resistant Cases

Increase in Unique Resistant Cases for Selected Crops

Number of Unique Resistant Cases

Dr. Ian Heap, WeedScience.org 2014

WHAT IS HERBICIDE RESISTANCE?

From the Weed Science Society of America:

"Herbicide resistance is the inherited ability of a plant to survive and reproduce following exposure to a dose of herbicide normally lethal to the wild type."

Where are resistant plants found?

- Mostly terrestrial
- Associated with agriculture
- Wetland species associated with rice fields
- Very few aquatics in lakes

WHICH AQUATIC PLANTS IN THE U.S. HAVE DEVELOPED HERBICIDE RESISTANCE?

• A duckweed (*Landoltia punctata*) from Lake County, FL is resistant to diquat.

• Hydrilla (*Hydrilla verticillata*) in multiple locations throughout Florida. Resistant to Sonar (fluridone).

• Hybrid milfoil (*Myriophyllum spicatum* x *sibiricum*) in midwest lakes may have some resistance to fluridone.

Hydrilla verticillata

- Aquatic submersed rooted perennial, with sessile, toothed leaves in whorls of 5 (3-8)
- Two 'strains' or biotypes recognized: monoecious and dioecious
- High frequency of triploids 3x=24, (diploid 2x=16)
- Vegetative reproduction
- •Nonindigenous and invasive in U.S.

Rake with Hydrilla tubers Photo by W.T. Haller Center for Aquatic and Invasive Plants Hydrilla Hydrilla verticillata Photo by Vic Ramey Copyright 1999 Univ. Florida

Identification of local monoecious Hydrilla

- Longer, narrower, limper leaves compared to dioecious
- No mid-rib spines
- Finer teeth along leaf edges

Leaves in whorls of 3, as well as 5.

New England locations of Hydrilla

FLURIDONE: EFFECTIVE HERBICIDE FOR CONTROLLING HYDRILLA

Fluridone (Sonar©): an effective, systemic, slow-acting herbicide, with low toxicity to other organisms e.g. fish, birds, humans

Evolution of resistant populations occurred in many Florida lakes following years of fluridone use

Hydrilla in Pond at Kenilworth Aquatic Gardens, Washington, D.C.

Hydrilla in pond, Mystic, CT

CAROTENOID BIOSYNTHESIS PATHWAY

Photosynthesis requires light capturing pigments: Chlorophyll (green), and

Detecting Herbicide Resistance

Hydrilla resistant to fluridone has one of 3 mutations in *pds* gene at codon 304 (Michel et al. 2004)

Wild-type Arg(CGT) \rightarrow Ser(AGT), Cys(TGT), His(CAT)

Fluridone can not bind effectively to a PDS enzyme when it has one of these mutations.

TESTING FOR PRESENCE OF HERBICIDE RESISTANCE

Collect plants from lake

Apply herbicide
fluridone (slow-acting, systemic)

Time: 3-4 weeks

Hydrilla growing in tanks at Sepro Corp.

Cost: \$2500

2) Determine the dose(s) of herbicide needed to control hydrilla

Characterization of resistance mutations

Codon 304		Fluridone resistance assessments 1 2		
CGT	Wild type	none	0	
AGT	mutation	low	2x-5x	
TGT	mutation	medium	ND	
CAT	mutation	high	7x	

1) Michel et al. 2004, 2) Puri et al. 2006

Molecular genetic method to identify resistance conferring mutations: PCR and sequence the hydrilla *pds* gene region containing codon 304

PCR product, millions to a billion copies

- Using the published cDNA of hydrilla pds gene, designed forward and reverse primers that flanked codon 304. Amplify directly from extracted DNA.
- Then DNA sequence: determine the sequence of nucleotides in the piece of DNA.

DNA Sequences of pds gene region

Mutation appears as a double peak with wild type C nucleotide

DNA Sequences of pds gene region

Hydrilla in the U.S. is all triploid = three sets of chromosomes

Resistant Dioecious hydrilla: Clone A = Mutation for herbicide resistance (AGT, TGT, CAT) Clone B = always wild type (CGT) Clone C = always wild type (CGT)

SCREEN FOR MUTATIONS AT CODON 304

SAMPLES	WATER BODIES	COUNTRIES	US DIO	US MONO
93	77	16	21	23

SIX LOCALITIES HAD HYDRILLA WITH FLURIDONE-RESISTANT MUTATIONS

FLORIDA: Five water bodies had hydrilla with mutations, Three (3) AGT, One (1) TGT, One (1) CAT

GEORGIA: One (1) CAT

ALL MONOECIOUS WERE WILD-TYPE

SOME ANSWERS, AND MORE QUESTIONS

- •All herbicide resistant hydrilla possess 2 genes with the wildtype (2 with CGT) and 1 with a mutation
- •Mutations occur on the same copy of one of three chromosomes ("clone A")
- •Is clone A more prone to mutation at codon 304 in *pds* gene?
- •Monoecious (Northeast) hydrilla does not have this dioecious (Southeast) clone A sequence as one of its three chromosomes.
- •Is monoecious hydrilla less prone to mutation at PDS codon 304, and therefore less likely to develop herbicide resistance?
- •OR... has monoecious hydrilla been exposed to less fluridone?

COMPARISON OF TREATMENT HISTORY AND HERBICIDE RESISTANCE

Site	fluridone use (yrs)	Alternate herbicides used	Physical removal	Resistance	biotype
Lake	· · ·				
Okahumpka, FL	8	0	No	Y	Dio.
West Lake Toho, FL	8	0	No	Y	Dio.
Wingates Landing, Lake Seminole, GA	10	0	No	Y	Dio.
Lake Gaston, NC & VA	6	?	grass carp	Ν	Mon.
Haven Lake, DE	2	1	mechanical harvester	Ν	Mon.
Concord Pond, DE	2	0	mechanical harvester	Ν	Mon.
Long Pond Barnstable, MA	8	0	No	N	Mon.

MANAGING HYDRILLA AND OTHER AQUATIC INVASIVE PLANTS TO PREVENT RESISTANCE

Rotate chemical treatments with non-chemical methods e.g., physical removal by machine, hand or triploid grass carp Rotate types of herbicides used \succ Very few herbicide approved for use in lakes. Others in development and testing stages. But... these are also single mechanism herbicides PREVENTION, Education, and Monitoring: Find early, treat early

Thank you and

Questions?